Partial demand forecast

Big data and predictive analytics can be used to optimise inventories and predict demand

By combining data science and big data, demand forecasts can be made much more efficiently.

 

Stocks can be optimised.

The results provide potential for reducing disposal costs.

Challenge

Long-term parts requirements for parts relevant to driving is extremely complex, as spare parts must be kept in stock for up to 15 years. Therefore, too many parts are often ordered and have to be scrapped after the 15-year storage period. To calculate order quantities, the products are only considered within their product families. There is no information about correlations beyond product families, such as brakes and electrics.

Solution

Based on the current process, current methods and existing technologies, a new concept for a optimised ordering process developed.
Calculation of correlations between the quantities ordered in stock of different material numbers from different product families.
The correlations of the order quantities are shown in a QlikView app visualised to verify the results.

Result

Through the combination of Data Science and Big Data can Demand forecasts be created much more efficiently. Over one billion different combination possibilities are identified as savings opportunities (out of 900 billion). The results provide potential for optimising inventories and reducing disposal costs.

Are you interested in your own use cases?

Our Case Studies

- Get even more detailed insights into our customer projects -

Smart cooking with Thermomix

Smart cooking with the Thermomix

Download
Case Study AI at Munich Re

Data Operations at Munich Re

Download

Data & AI Knowledge

Creating added value from data & AI together

Blog

Discover professional articles on Data & AI as well as the latest industry news.

Webinars

Dive into our Best Practices and Industry Exchanges. Discover new dates and recordings of past webinars.

Whitepaper

Learn more about the use of Data & AI in your industry with our white papers, case studies and research.